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Introduction
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Fabio Rolia Adversarial Machine Learning

@ Machine learning have reported impressive performance

Introduction @ It can be fooled by adversarial examples

@ Research papers have started proposing countermeasures to
mitigate the threat associated to these wild patterns

Misconception

@ Start date of the field of adversarial machine learning
@ adversarial examples against linear classifiers(2004) —
adversarial examples against deep networks(2014)

Goal of Paper

@ Provide an overview of adversarial machine learning

@ Connect between the security of non-deep learning and deep
learning

@ Highlight common misconceptions of security evaluation of
learning algorithms
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Arms race
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Security is an amrs race

Arms Race and A i
e ace @ Security is an arms race
@ Security of machine learning is not an exception

Design
4

Example in spam filtering

@ Rule-based filters & text classifiers — Obfuscate the content of
spam emails(mispelling bad words, adding good words)

@ Embed the spam message within an attached image — Detect
spam using signatures of known spam hash & OCR tools —
Obfuscate images with random noise

@ Learning-based spam detection — Generate adversarial example

<




Reactive and proactive security
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Adversary

oungjoon Kim 1. Analyze system
2.Devise attack

4.Develop countermeasure
(e.g., add features, retraining)

3. Analyze attack

Arms Race and
Security by
Design

Figure: Reactive security

Designer

4.Develop countermeasure
(if the attack has a relevant impact)

3.Evaluate attack’s impact

1.Model adversary
2.Simulate attack

Figure: Proactive security

Security designer should follow proactive approach to prevent
never-before-seen attacks J
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Modeling Threats

Know your adversary

Know your adversary

“If you know the enemy and know yourself, you need not fear the
result of a hundred battles.” (Sun Tzu, The Art of War, 500 BC)

o’

Modeling components

@ Attacker's Goal

@ Attacker's Knowledge
o Attacker's Capability
@ Attack Strategy




Attacker's Goal
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Security Violation

o Integrity violation : evade detection without compromising
normal system operation

@ Availability violation : compromise the normal system
functionalities available to legitimate users

@ Privacy violation : obtain private information about the system

Attack Specificity

o Targeted : attack specific set of samples

o Indiscriminate : attack any sample

v

Error Specificity

@ Specific : misclassified as a specific class

@ Generic : misclassified as any of other classes
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Knowledges of the target systems

@ Training data D

o Feature set X
@ Learning algorithm f

o Trained parameters/hyper-parameters w.

o Knowledges of systems 6 = (D, X, f, w)

Perfect-Knowledge (PK) White-Box Attacks
o X, f, D, w
@ Opx = (D,X, f, W)
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Limited-Knowledge (LK) Gray-Box Attacks

@ LK-SD(Surrogate Data)
o X, f,D, w R
° a surrogateAdata set D, estimated parameters w
o eLK—SD S (D,)(7 f, VAV)

@ LK-SL(Surrogate Learners)
o X, f,D, w_ .
o Oix—sL = (D, X, f, w).
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Zero-Knowledge (ZK) Black-Box Attacks
e X, f,D,w

@ Attacker can query the system in a black-box manner and get
feedback(labels or confidence scores)

@ Purpose of classifier(e.g. object detection), kind of features(e.g.
static feature or dynamic feature in malware classification), kind
of data

N

o O = (D, X, f,w)
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Attack Influence

o Poisoning Attacks : can manipulate both training and test data

o Evasion Attacks : can only manipulate test data

v

Data Manipulation Constraints

@ Presence of application specific constraints on data manipulation

o E.g. malicious code has to be modified without compromising its
intrusive functionality

@ Initial attack samples D, can only be modified according to a
space of possible modifications ®(D,)

Attacker's Capability




Attack Strategy
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Optimal Attack Strategy

o Given attacker’s knowledge ¢ € © attack samples D, € ¢(D.)

@ Attacker's goal can be defined in terms of an objective function
- A(DL, 6) e R

D} € argmax A(D., 0) (1)
DLED(D,)

v
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3 Security Evaluation Curve
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Figure: Security Evaluation Curve; Attack strength can be amount of
perturbation or number of poisoning attack points
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Attacker’s Goal

Misclassifications that do Misclassifications that Querying strategies that reveal
not compromise normal compromise normal confidential information on the
system operation system operation learning model or its users
Attacker’s Capability Integrity Availability Privacy / Confidentiality
Test data Evasion (a.k.a. adversarial - Model extraction / stealing

examples) and model inversion (a.k.a.
hill-climbing attacks)
Training data Poisoning (to allow subsequent Poisoning (to maximize -

intrusions) — e.g., backdoors or classification error)

Summary of Attacks neural network trojans

Figure: Categorization of attacks. Evasion, Poisoning, Model extraction,
Model inversion, Backdoor
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Evasion Attacks

o Evasion attacks consist of manipulating input data to evade a
trained classifier at test time

o Error-generic, Error-specific
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Examples of Evasion Attacks

@ Manipulation of malware code to have the corresponding sample
misclassified as legitimate

@ Manipulation of images to mislead object recognition

f;(x) : confidence score of the classifier on the sample x for class i




Error-generic Evasion Attacks
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" @ Mislead classification to any other class

Problem Formulation

max  A(0) =) = maxfi) ~ (), (@)

X

S.t. d(x, Xl) < dmax, Xb =X = Xup (3)

@ fi(x) : the discriminant function associated to the true class k of
the source sample x
@ max;k f1(x) : the closest competing class
@ manipulation constraints ®(D.):
e a distance constraint d(x,x’) < dmax, Which sets a bound on the
maximum input perturbation between x
e a box constraint xi, < x” < xup, which bounds the values of the
attack sample x’

Evasion Attack




Error-specific Evasion Attacks
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" @ Mislead classification to specific class

Problem Formulation

max A, 6) = —Q(x) = filx) — maxfi(x), (4)
S.t. d(X, Xl) < dmax, Xb =X = Xup (5)

@ fi(x) : the discriminant function associated to the targeted class
k
@ max;k f1(x) : the closest competing class
@ manipulation constraints ®(D.):
e a distance constraint d(x,x’) < dmax, Which sets a bound on the
maximum input perturbation between x
e a box constraint xi, < x” < xup, which bounds the values of the
attack sample x’

Evasion Attack
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Algorithm

o Differentiable learning algorithm : gradient-based attack

o Non-differentiable learning algorithm : more complex
strategies[Kantchelian et al] or using same algorithm against a
differentiable surrogate learner
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Evasion Attack

Legend

@ Fionzering work onschersaris machine learing

@ Work on securiy evaluationofearning algorithrs.
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Poisoning Attacks
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o Poisoning attacks aim to increase the number of misclassified
samples at test time by injecting a small fraction of poisoning
samples into the training data

o Error-generic, Error-specific in PK white-box setting
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Error-generic Poisoning Attacks
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: ' @ Aims to cause a denial of service, by inducing as many
misclassifications as possible, regardless of the classes

v

Problem Formulation

D} € arg max A(DL,0) = L(Dyar, w*), (6)
Dle®(Dc)
s.t. w* € argmin L(Dy U DL, w'), (7)
w/ eWw

@ Dy and Dy, : two data sets available to the attacker
°




Error-specific Poisoning Attacks
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@ Aims to cause specific misclassifications.

Problem Formulation

D} € arg max A(D.,0) = —L(Dy, w*), (8)
DLE®(D,)
s.t. w* € argmin L(Dy U DL, w'), (9)
w'eWw

e D/, contains the same samples as Dy, but their labels are
chosen by the attacker according to the desired
misclassifications.
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Algorithm

@ Replace the inner optimization by its equilibrium conditions

o Deep Networks : back-gradient poisoning




Table of Contents

Battista Biggio,
Fabio Rolia

Youngjoon Kim

© Security Measures for Learning Algorithms
Security @ Reactive Defenses

Measures for

Learning @ Proactive Defenses

Algorithms




Reactive Defenses
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Reactive Defenses

Aims to counter past attacks
o Timely detection of novel attacks
o Frequent classifier retraining

@ Verification of consistency of classifier decisions against training
data and ground-truth labels
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Proactive Defenses

Aims to prevent future attacks
@ Security by Design
@ Security by Obscurity




Security-by-Design Defenses against White-box
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Countering Evasion Attacks

o lteratively retraining the classifier which is similar with
adversarial training

@ Approaches based on game theory

@ Robust optimization; formulates adversarial learning as a
minimax problem

o Detecting and rejecting samples which are sufficiently far from
the training data

@ Classifier ensembles




Security-by-Design Defenses against White-box
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Figure: Effect of class-enclosing defenses against blind-spot adversarial
examples on multiclass SVMs with RBF kernels

Effect on Decision Boundaries

@ retraining and rejection can make decision functions may ten to
enclose training classes more tightly




Security-by-Design Defenses against White-box
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Countering Poisoning Attacks

@ Attack has to be exhibit different characteristics from the
original training data

o Data sanitization; attack detection and removal

@ Robust learning; learning algorithm based on robust statistics




Security-by-Obscurity Defenses against Black-box
Attacks
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Security-by-Obscurity

@ Disinformation technique; hide information to improve security

@ Aim to counter gray-box and black-box attacks

o Randomizing training data

o Using difficult to reverse-engineer classifiers

@ Denying access to the actual classifier or training data
o Randomizing the classifier’s output
°

Gradient masking has been proposed to hide the gradient
direction, but it has been shown that it can be easily
circumvented with surrogate learners
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Discussion

@ Machine learning can deal with known unknowns

@ Adversarial machine learning often deals with unknown
unknowns

@ Unknown unknowns are the real threat in many security
problems (e.g., zero-day attacks in computer security)

@ Machine learning algorithms should be able to detect unknown
unknowns

Conclusion and
Future Work



Future works
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o Formal verification and certified defenses
@ Robust artificial intelligence
@ Interpretability of machine learning

Conclusion and
Future Work
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My Opinions and Questions
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Attack Strength

Is it meaningful to an adversarial example that even people recognize
as different classes?

Proactive Defense

Is perfect proactive defense possible in theoretically?

Trade-off

What is the trade-off between the model’s performance and security?
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